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Abstract

We introduce OpenIllumination, a real-world dataset containing over 108K im-1

ages of 64 objects with diverse materials, captured under 72 camera views and2

a large number of different illuminations. For each image in the dataset, we3

provide accurate camera parameters, illumination ground truth, and foreground4

segmentation masks. Our dataset enables the quantitative evaluation of most in-5

verse rendering and material decomposition methods for real objects. We examine6

several state-of-the-art inverse rendering methods on our dataset and compare7

their performances. The dataset and code can be found on the project page:8

https://oppo-us-research.github.io/OpenIllumination.9

1 Introduction10

Recovering object geometry, material, and lighting from images is a crucial task for various ap-11

plications, such as image relighting and view synthesis. While recent works have shown promis-12

ing results by using a differentiable renderer to optimize these parameters using the photometric13

loss [51, 53, 52, 20, 32], they can only perform a quantitative evaluation on synthetic datasets since it14

is easy to obtain ground-truth information. In contrast, they can only show qualitative results instead15

of providing quantitative evaluations in real scenes.16

Nevertheless, it is crucial to acknowledge the inherent gap between synthetic and real-world data,17

for real-world scenes exhibit intricate complexities, such as natural illuminations, diverse materials,18

and complex geometry, which may present challenges that synthetic data fails to model accurately.19

Consequently, it becomes imperative to complement synthetic evaluation with real-world data to20

validate and assess the ability of inverse rendering algorithms in practical settings.21

It is highly challenging to capture real objects in practice. A common approach to capturing real-22

world data is using a handheld camera [20, 53]. Unfortunately, this approach frequently introduces23

the occlusion of ambient light by photographers and cameras, consequently resulting in different24

illuminations for each photograph. Such discrepancies are unreasonable for most methods that25

assume a single constant illumination. Furthermore, capturing images under multiple illuminations26
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Figure 1: Some example images in the proposed dataset. The dataset contains images of various
objects with diverse materials, captured under different views and illuminations. The leftmost
column visualizes several different illumination patterns, with red and yellow indicating activated
and deactivated lights. The name and material for each object are listed in the first and second rows.
The materials are selected from the OpenSurfaces [3] dataset.

with a handheld camera often produces images with highly different appearances and results in27

inaccurate and even fail camera pose estimation, particularly for feature matching-based methods28

such as COLMAP [37]. Recent efforts have introduced some datasets [33, 43, 21] that incorporate29

multiple illuminations in real-world settings. However, as shown in Tab. 1, most of them are limited30

either in the number of views [33, 21] or the number of illuminations [21]; few of them provide31

object-level data as well. Consequently, these existing datasets prove unsuitable for evaluating inverse32

rendering methods on real-world objects.33

To address this, we present a new dataset containing objects with a variety of materials, captured34

under multiple views and illuminations, allowing for reliable evaluation of various inverse rendering35

tasks with real data. Our dataset was acquired using a setup similar to a traditional light stage [10, 11],36

where densely distributed cameras and controllable lights are attached to a static frame around a37

central platform. In contrast to handheld capture, this setup allows us to precisely pre-calibrate all38

cameras with carefully designed calibration patterns and reuse the same camera parameters for all the39

target objects, leading to not only high calibration accuracy but also a consistent evaluation process40

(with the same camera parameters) for all the scenes.41

On the other hand, the equipped multiple controllable lights enable us to flexibly illuminate objects42

with a large number of complex lighting patterns, facilitating the acquisition of illumination ground43

truth.44

With the help of high-speed cameras running at 30 fps, we are able to capture OLAT (One-Light-At-45

a-Time) images with a very high efficiency, which is critical for capturing data at a large scale. In46

the end, we have captured over 108K images, each with a well-calibrated camera and illumination47

parameters. Moreover, we also provide high-quality object segmentation masks by designing an48

efficient semi-automatic mask labeling method.49

We conduct baseline experiments on several tasks: (1) joint geometry-material-illumination esti-50

mation; (2) joint geometry-material estimation under known illumination; (3) photometric stereo51

reconstruction; (4) Novel view synthesis to showcase the ability to evaluating for real objects on our52

dataset. To the best of our knowledge, by the time of this paper’s submission, there are no other real53

datasets that can be used to perform the quantitative evaluation for relighting on real data.54

In summary, our contributions are as follows:55
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Dataset Capturing device
Lighting
condition

Number of
illuminations

HDR
Number of

scenes/objects
Number of

views
DTU [19] gantry pattern 7 ✗ 80 scenes 49/64

NeRF-OSR [36] commodity camera env 5∼11 ✗ 9 scenes ∼360
DiLiGenT [39] commodity camera OLAT 96 ✓ 10 objects 1

DiLiGenT-MV [26] studio/desktop scanner OLAT 96 ✓ 5 objects 20
NeROIC [23] commodity camera env 4∼6 ✗ 3 objects 40

MIT-Intrinsic [15] commodity camera OLAT 10 ✗ 20 objects 1
Murmann et al. [33] light probe env 25 ✗ 1000 scenes 1

LSMI [21] light probe env 3 ✗ 2700 scenes 1
ReNe [43] gantry OLAT 40 ✗ 20 objects 50

Ours light stage pattern+OLAT
13 pattern+
142 OLAT

✓ 64 objects 72

Table 1: Comparison between representative multi-illumination real-world datasets. Env. stands
for environment lights.

• We capture over 108K images for real objects with diverse materials under multiple view-56

points and illuminations, which enables a more comprehensive analysis for inverse rendering57

tasks across various material types.58

• The proposed dataset provides precise camera calibrations, lighting ground truth and accurate59

object segmentation masks.60

• We evaluate and compare the performance of multiple state-of-the-art (SOTA) inverse61

rendering and novel view synthesis methods. We perform quantitive evaluation of relighting62

real object under unseen illuminations.63

2 Related works64

Inverse rendering. Inverse rendering has been a long-standing task in the fields of computer vision65

and graphics, which focuses on reconstructing shapes and materials from multi-view 2D images. A66

great amount of work [5, 14, 18, 25, 47, 34, 52, 54] has been proposed for this task. Some of them67

make use of learned domain-specific priors [5, 12, 2, 27]. Some other works rely on controllable68

capture settings to estimate the geometry and material, such as structure light [48], circular LED69

lights [55], collocated camera and flashlight [50, 5, 4], and so on.70

Recently, a lot of works use neural representations to support inverse rendering reconstruction under71

unknown natural lighting conditions [20, 6, 52, 54, 7, 32, 51]. By combining the popular neural72

representations such as NeRF [30] or SDF [45, 49] with physically-based rendering model [8], they73

can achieve shape and reflectance reconstruction with image loss constrain. Although these works74

can achieve high-quality reconstruction, they can only evaluate relighting performance under novel75

illumination on synthetic data because of the lack of high-quality real object datasets.76

Multi-illumination datasets. Multi-illumination observations intuitively provide more cues for77

computer vision and graphics tasks like inverse rendering. Some works have utilized the temporal78

variation of natural illumination, such as sunlight and outdoor lighting. These "in-the-wild" images79

are typically captured using web cameras [46, 41, 36] or using controlled camera setups [40, 24].80

Another line of works focuses on indoor scenes, while indoor scenes generally lack a readily-available81

source of illumination that exhibit significant variation. In this case, a common approach involves82

using flash and no-flash pairs [35, 13, 1]. Applications like denoising, mixed-lighting white balance,83

and BRDF capture benefits from these kinds of datasets. However, other applications like photometric84

stereo and inverse rendering usually require more than two images and more lighting conditions for85

reliable results, which these datasets often fail to provide.86
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(a) (b) (c)

Figure 2: (a) The capturing system contains 48 DSLR cameras (Canon EOS Rebel SL3), 24 high-
speed cameras (HR-12000SC), and 142 controllable linear polarized LED. (b) The calibrated DSLR
camera poses. (c) The reconstructed light positions.

3 Dataset construction87

3.1 Dataset overview88

The OpenIllumination dataset contains over 108K images of 64 objects with diverse materials. Each89

object is captured by 48 DSLR cameras under 13 lighting patterns. Additionally, 20 objects are90

captured by 24 high-speed cameras under 142 OLAT setting.91

Fig. 1 shows some images captured under different lighting patterns, while the images captured under92

OLAT illumination can be found in Fig. 5.93
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Our dataset includes a total of 24 diverse ma-94

terial categories, such as plastic, glass, fabric,95

ceramic, and more. Note that one object may96

possess several different materials, thus the num-97

ber of materials is larger than the number of98

objects.99

3.2 Camera calibration100

The accuracy of camera calibration highly af-101

fects the performance of most novel view syn-102

thesis and inverse rendering methods. Previous103

works [20, 53] typically capture images by handheld cameras and employ COLMAP [37] to estimate104

camera parameters. However, this approach heavily relies on the object’s textural properties, which is105

challenging in instances where the object lacks texture or exhibits specular reflections from certain106

viewpoints. These challenges can obstruct accurate feature matching, consequently reducing the107

precision of camera parameter estimation. Ultimately, the reliability of inverse rendering outcomes108

is undermined, and finding out whether inaccuracies are caused by erroneous camera parameters109

or limitations of the inverse rendering method itself becomes a challenging problem. Leveraging110

the capabilities of our light stage, wherein camera intrinsics and extrinsic can be fixed when cap-111

turing different objects, we employ COLMAP to recover the camera parameters on a textured and112

low-specularity scene. For each subsequently captured object, we use this set of camera parameters113

instead of performing recalibration. The results of camera calibration are visualized in Fig. 2(b).114

3.3 Light calibration115

In this section, we propose a chrome-ball-based lighting calibration method to obtain the ground-truth116

illumination which plays a critical role in the relighting evaluation.117
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Our data are captured in a dark room where a set of linear polarized LEDs are placed on a sphere118

uniformly as the only outer lighting source. Each light can be approximated by a Spherical Gaussian119

(SG), defined as the following form [44]:120

G(ν; ξ, λ,µ) = µ eλ(ν·ξ−1), (1)

where ν ∈ S2 is the function input, representing the incident lighting direction to query, ξ ∈ S2 is the121

lobe axis, λ ∈ R+ is the lobe sharpness, and µ ∈ Rn
+ is the lobe amplitude.122

We utilize a chrome ball to estimate the 3D position of each light. Assuming the chrome ball is123

highly specular and isotropic, its position and radius are known, and cameras and lights are evenly124

distributed around the chrome ball. For each LED single light, at least one camera can capture the125

reflected light rays out from its starting location. The incident light direction can be computed via:126

I = −T + 2(I ·N)N, (2)

where I is the incident light direction that goes out from the point of incidence, N is the normal of127

the intersection point on the surface, and T is the direction of the reflected light.128

chrome 
ball

camera light

N
IT

For each LED light, its point of incidence on the chrome ball can be129

captured by multiple cameras, and for each camera i, we can compute an130

incident light direction Ii, which should have the least distance from the131

LED light location p. Therefore, to leverage information from multiple132

camera viewpoints, we seek to minimize the sum of distances between133

the light position and incident light directions across different camera134

views. This optimization is expressed as:135

L(p) =
∑
i

d(p, Ii), ∥p∥ = 1, (3)

where p represents the light position to be determined, d(p, Ii) denotes the L2 distance between the136

light and the incident light direction corresponding to view i, and the constraint ∥p∥ = 1 ensures137

that the lights lie on the same spherical surface as the cameras. The reconstructed light distribution,138

depicted in Fig. 2(c), closely aligns with the real-world distribution.139

After estimating the 3D position for each light, we need to determine lobe size for them. Since the140

lights in our setup are of the same type, we can estimate a global lobe size for all lights. By taking one141

OLAT image of the chrome ball as input, we flatten it into an environment map. Subsequently, we142

optimize the parameters of the Spherical Gaussians (SGs) model to minimize the difference between143

the computed environment map and the observed environment map.144

Since all the lights have identical lighting intensities, and the lighting intensity can be of arbitrary145

scale because of the scale ambiguity between the material and lighting, we set the lighting intensity146

to 5 for all lights.147

3.4 Semi-automatic high-quality mask labeling148

To obtain high-quality segmentation masks, we use Segment-Anything [22] (SAM) to perform149

instance segmentation. However, we find that the performance is not satisfactory. One reason is that150

the object categories are highly undefined. In this case, even combining the bounding box and point151

prompts cannot produce satisfactory results. To address this problem, we use multiple bounding-box152

prompts to perform segmentation for each possible part and then calculate a union of the masks as the153

final object mask. For objects with very detailed and thin structures, e.g. hair, we use an off-the-shelf154

background matting method [28] to perform object segmentation.155

4 Baseline experiments156

4.1 Inverse rendering evaluation157

In this section, we conduct experiments employing various learning-based inverse rendering methods158

on our dataset. Throughout these experiments, we carefully select 10 objects exhibiting a diverse159
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GT
Neural PIL

PBRNormalAlbedo
NeRD PhySG

PBRNormalAlbedo

Nvdiffrec-MC
PBRNormalAlbedo

InvRender TensoIR
PBRNormalAlbedo

PBRNormalAlbedo

GT PBRNormalAlbedo

Figure 3: The object reconstruction on our dataset from three inverse rendering baselines under single
illumination. Objects highlighted by green color are easier tasks in our dataset, while objects in red
color are more difficult tasks that involve more complicated materials like metal and clear plastic.

range of materials, and we partition the images captured by DSLR cameras into training and testing160

sets, containing 38 and 10 views respectively.161

Baselines. We validate six recent learning-based inverse rendering approaches assuming single162

illumination conditions: NeRD [6], Neural-PIL [7], PhySG [51], InvRender [54], nvdiffrec-mc [16],163

and TensoIR [20]. Moreover, we validate three of them [6, 7, 20] that support multiple illumination164

optimization.165

Joint geometry-material-illumination estimation. For experiments under single illumination, we166

use images captured with all lights activated, while for multi-illumination, we select images taken167

under three different lighting patterns.168

NeRD[6] is observed to exhibit high instability. In many cases, NeRD fails to learn a meaningful169

environment map. Neural-PIL [7] generates fine environment maps and produces high-quality170

renderings. However, the generated environment map incorporates the albedo of objects and fails171

6



to produce reasonable diffuse results in multi-illumination conditions. Both NeRD and Neural-PIL172

suffer from map fractures in roughness, normal, and albedo, providing visible circular cracks, which173

we attribute to the overfitting of the environment map, where certain colors become embedded within174

it. PhySG [51] applies specular BRDFs allowing for a better approximate evaluation of light transport.175

PhySG shows commendable results on metal and coated materials, simulating a few highlights. But176

its geometry learning was inaccurate, and it performed poorly in objects with multiple specular177

parts, failing to reproduce any prominent highlights. InvRender [54] models spacially-varying178

indirection illumination and the visibility of direct illumination. However, its reconstructed geometry179

tends to lack detail and be over-smooth on some objects. nvdiffrec-mc [16] incorporates Monte180

Carlo integration and a denoising module during rendering to achieve a more efficient and stable181

convergence in optimization. It achieves satisfactory relighting results on most objects. But the182

quality of geometry detail as shown in the reconstructed normal map is affected by the grid resolution183

of DMTet [38]. TensoIR [20] also exhibits satisfactory performance. However, it still encounters184

challenges in generating good results for highly specular surfaces, as shown in the fourth row in185

Fig. 3. Moreover, since TensoIR models materials using a simplified version of Disney BRDF [8],186

which fixes the F0 in the fresnel term to be 0.04, its representation capabilities are limited, and certain187

materials such as metal and transparent plastic may not be accurately modeled, as illustrated in the188

fifth row in Fig. 3 and Tab. 2, where TensoIR only achieve about 22 PSNR on the translucent plastic189

cup.190

Overall, all the methods struggle with modeling transparency or complex reflectance because of the191

relatively simple BRDF used in rendering. For concave objects, such as the metal bucket shown in192

Fig. 3, NeRF-based methods have difficulty learning the correct geometry. In addition, compared to193

single illumination, two of our baselines, NeRD and NeuralPIL show inferior performance under194

multi-illumination, and the baseline TensoIR maintains a high quality of the reconstruction.195

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRD 33.40 27.20 26.81 22.80 23.81 27.64 22.06 26.78 25.54 26.14

Neural-PIL 34.42 29.41 29.17 25.49 27.59 30.14 22.55 31.01 31.61 27.73

PhySG 35.06 30.72 29.02 26.56 27.32 31.16 21.86 30.70 34.39 29.25

InvRender 31.52 25.51 24.96 23.80 25.43 22.79 21.62 24.20 29.34 26.18

nvdiffrec-mc 35.77 31.51 30.20 27.29 28.12 31.19 22.08 32.68 35.60 28.52

TensoIR 34.88 29.96 30.21 26.80 28.20 31.96 22.13 32.49 34.77 29.32

Table 2: Inverse rendering evaluation results under single illumination. We validate six inverse
rendering baselines with static illumination. We report the PSNR results for each object.

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRD 26.32 24.20 24.34 21.05 18.74 23.14 21.59 17.73 21.22 16.48

Neural-PIL 30.84 28.48 28.47 25.45 25.74 29.80 22.44 29.41 30.59 26.06

TensoIR 34.51 29.88 30.21 26.53 27.96 31.58 22.09 31.87 34.35 28.91

Table 3: Inverse rendering evaluation results under multi-illumination. We select three light
patterns from our dataset to validate three baselines that support multiple illuminations. We report
the PSNR results for each object.

Joint geometry-material estimation under known illumination. As introduced in Sec. 3.1, we196

capture the objects under different illuminations. For each illumination, we provide illumination197

ground truth represented as a combination of Spherical Gaussian functions. This enables us to198

evaluate the performance of relighting under novel illumination with the decomposed material and199

geometry.200
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Reference Albedo Normal PBR
Novel Lighting 1 Novel Lighting 2

Rendering GT Rendering GT

Figure 4: Relighting results of TensoIR under novel illumination. We show the reconstructed albedo,
normal, and PBR results. For each novel illumination, we show the rendering and ground-truth
captured images.

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

PSNR 31.99 31.07 30.16 27.57 27.16 32.38 22.96 30.86 32.13 27.13

Table 4: Performance of relighting under novel illumination using TensoIR.

Tab. 4 shows the relighting performance of TensoIR [20] on 10 objects. Fig. 4 shows the material201

decomposition and the relighting visualizations. In general, TensoIR performs better on diffuse202

objects than on metal and transparent objects.203

4.2 Photometric stereo204

Photometric stereo (PS) is a well-established technique to reconstruct a 3D surface of an object [18].205

The method estimates the shape and recovers surface normals of a scene by utilizing several intensity206

images obtained under varying illumination conditions with an identical viewpoint [17, 42]. By207

default, PS assumes a Lambertian surface reflectance, in which normal vectors and image intensities208

are linearly dependent on each other. During our capturing, we place circular polarizers over each209

light source, we also place a circular polarizer of the same sense in front of the camera to cancel out210

the specular reflections [29]. Fig. 5 shows the reconstructed albedo and normal map from the OLAT211

images in our dataset.212

4.3 Novel view synthesis213

Object egg stone bird box pumpkin hat cup sponge banana bucket

Material paper stone painted coated wooden fabric clear plastic sponge food metal

NeRF [30] 33.53 29.32 29.64 25.38 26.95 31.29 22.52 31.36 33.65 28.54

TensoRF [9] 32.42 29.84 28.45 25.49 27.54 31.50 20.87 31.34 34.32 29.28

I-NGP [31] 34.07 30.62 29.91 25.83 27.93 32.51 22.51 32.71 34.98 29.72

NeuS [45] 33.43 29.78 30.00 25.47 27.83 31.93 22.13 32.44 34.17 29.99

Table 5: Novel-view-synthesis PSNR on NeRF, TensoRF, Instant-NGP, and NeuS.
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OLAT images Albedo Normal

Figure 5: Results of photometric stereo using the OLAT images in our dataset.

While our dataset was primarily proposed for evaluating inverse rendering approaches, the multi-view214

images in it can also serve as a valuable resource for evaluating novel view synthesis methods. In215

this section, we perform experiments utilizing several neural radiance field methods to validate the216

data quality of our dataset. We conduct experiments employing the vanilla NeRF [30], TensoRF [9],217

Instant-NGP [31], and NeuS [45]. The quantitative results, as presented in Tab. 5, demonstrate the218

exceptional quality of our data and the precise camera calibration, as evidenced by the consistently219

high PSNR scores attained.220

4.4 Ablation study221

（a） （b）

Hand-held camera reconstruction Our dataset reconstructionInconsistency between views

Figure 6: (a) Capturing using a handheld camera often introduces inconsistent illuminations. (b)
Geometry reconstruction using data in our dataset delivers higher completion than using data captured
by handheld cameras.

As depicted in Fig. 6(a), the utilization of handheld cameras in the capture process frequently gives rise222

to inconsistent illumination between different viewpoints because of the changing occlusion of light223

caused by the moving photographer, thereby breaching the static illumination assumption for most224

inverse rendering methods. Furthermore, using handheld cameras tends to inadequately ensure an225

extensive range of viewpoints, thereby frequently resulting in the incompleteness of the reconstructed226

objects. Conversely, our dataset delivers a superior range of viewpoints and maintains consistency227

across different objects, thereby producing a more complete reconstruction. This demonstrates the228

high quality of our dataset and establishes its suitability as an evaluation benchmark for real-world229

objects.230
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5 Limitation231

There are several limitations and future directions to our work. (1) Since we use the light stage to232

capture the images in a dark room, the illumination is controlled strictly. Thus there exists a gap233

between the images in this dataset and in-the-wild captured images. (2) Although we use state-of-the-234

art methods for segmentation, the mask consistency across different views for smaller objects with235

fine details, such as hair, is not considered yet. (3) Due to the limited space, the sizes of the objects in236

the dataset are restricted to 10∼20 cm, and the cameras are not highly densely distributed.237

6 Conclusion238

In this paper, we introduce a multi-illumination dataset OpenIllumination for inverse rendering239

evaluation on real objects. This dataset offers crucial components such as precise camera parameters,240

ground-truth illumination information, and segmentation masks for all the images. OpenIllumination241

provides a valuable resource for quantitatively evaluating inverse rendering and material decomposi-242

tion techniques applied to real objects for researchers. By analyzing various state-of-the-art inverse243

rendering pipelines using our dataset, we have been able to assess and compare their performance ef-244

fectively. The release of both the dataset and accompanying code will be made available, encouraging245

further exploration and advancement in this field.246
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